0.002 (6) and 0.012 (5) Å out of the planes of the O atoms.

A similar structural arrangement to this has been observed in dinitratotris(pyridine)Cd<sup>II</sup> (Cameron, Taylor & Nuttall, 1972) and also in aquadinitratobis(quinoline)Cd<sup>II</sup> (Cameron, Taylor & Nuttall, 1973). The only structural results for 2,6-dimethyl-4-pyrone compounds are for the hydrobromide monohydrate (Hope, 1965) determined with limited X-ray data, dinitratobis(2,6-dimethyl-4-pyrone)zinc (Brown & Lewis, 1984*a*) and dinitratobis(2,6-dimethyl-4-pyrone)copper (Brown & Lewis, 1984*b*).

Our grateful thanks are due to Dr M. B. Hursthouse for arranging the data collection on the CAD-4 diffractometer at Queen Mary College, University of London.

#### References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1970). NRC crystallographic programs for the IBM/360 system. National Research Council, Ottawa, Canada.
- BROWN, C. J. & LEWIS, J. F. P. (1984a). Acta Cryst. C40, 368-370.
- BROWN, C. J. & LEWIS, J. F. P. (1984b). Acta Cryst. Submitted.
- CAMERON, A. F., TAYLOR, D. W. & NUTTALL, R. H. (1972). J. Chem. Soc. Dalton Trans. pp. 1608-1611.
- CAMERON, A. F., TAYLOR, D. W. & NUTTALL, R. H. (1973). J. Chem. Soc. Dalton Trans. pp. 2130-2134.

HILL, A. E. (1971). PhD thesis, Univ. of London.

- Норе, Н. (1965). Acta Chem. Scand. 19, 217-222.
- International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-207. Birmingham: Kynoch Press.

Acta Cryst. (1984). C40, 1164-1169

# Structures of *cis*-Dichloro(methanol)(salicylaldehyde benzoylhydrazonato)iron(III), [FeCl<sub>2</sub>( $C_{14}H_{11}N_2O_2$ )(CH<sub>4</sub>O)], and Chloro(salicylaldehyde benzoylhydrazonato)copper(II) Monohydrate, [CuCl( $C_{14}H_{11}N_2O_2$ )].H<sub>2</sub>O

BY A. A. ARUFFO,\* T. B. MURPHY,† D. K. JOHNSON,‡ N. J. ROSE AND V. SCHOMAKER

Departments of Chemistry and Medicinal Chemistry, University of Washington, Seattle WA 98195, USA

(Received 14 October 1982; accepted 13 December 1983)

Abstract. [FeCl<sub>2</sub>(Hsbh)(CH<sub>3</sub>OH)] (A) (H<sub>2</sub>sbh is salicylaldehyde benzoylhydrazone):  $M_r = 398.0$ , triclinic, P1, a = 6.665 (2), b = 13.818 (6), c =10.122 (4) Å,  $\alpha = 108.40$  (2),  $\beta = 73.23$  (2),  $\gamma =$ 103.32 (2)°, V = 837 Å<sup>3</sup>, Z = 2,  $D_x = 1.580$  g cm<sup>-3</sup>,  $\lambda$ (Mo Ka) = 0.71069 Å,  $\mu = 12.5$  cm<sup>-1</sup>, F(000) = 406, room temperature. [CuCl(Hsbh)].H<sub>2</sub>O (B):  $M_r =$ 356.3, monoclinic,  $P2_1/a$ , a = 16.201 (21), b = 7.107 (10), c = 12.540 (18) Å,  $\beta = 89.87$  (9)°, V =1444 Å<sup>3</sup>, Z = 4,  $D_x = 1.64$  g cm<sup>-3</sup>,  $\mu = 17.7$  cm<sup>-1</sup>, F(000) = 724, room temperature. For (A), 3740 observations gave R = 0.043 and wR = 0.036. For (B), 1250 observations gave R = 0.091 and wR = 0.065. The Cu coordination in (B) is square-planar, with  $Cl^{-}$ and O(1), O(2), and N(2) of Hsbh<sup>-</sup>; the Fe in (A) is octahedral, with axial Cl<sup>-</sup> and CH<sub>3</sub>OH in addition to Cl<sup>-</sup>, O(1), O(2), and N(2) as in (B). The uncoordinated hydrazidic nitrogen, N(1), remains protonated in both.

microorganisms (Dimmock, Baker & Taylor, 1972), and cultured cells (Ponka, Borova, Neuwirt, Fuchs & Necas, 1979; Johnson, Murphy, Rose, Goodwin & Pickart, 1982), which appear to be associated with its ability to chelate essential metal ions *in vivo*. Crystallographic studies of complexes (A) and (B), formed by  $H_2$ sbh with the common essential metals iron and copper, were therefore undertaken (preliminary communication: Aruffo, Murphy, Johnson, Rose & Schomaker, 1982) as part of our attempts to understand its biological properties. Although various transition-metal complexes of Hsbh<sup>-</sup> have been described, we know of no other Hsbh<sup>-</sup> crystal structures.§

Introduction. H<sub>3</sub>sbh is a potentially tridentate chelating

agent formed by the Schiff-base condensation of salicylaldehyde with benzoyl hydrazide. This agent

produces a variety of biological responses, both in

animals (Johnson, Pippard, Murphy & Rose, 1982),

**Experimental.** Crystals of (A) were obtained by mixing equimolar quantities of  $H_2$ sbh and FeCl<sub>3</sub>.6H<sub>2</sub>O in methanol. The resulting solution was filtered; on

© 1984 International Union of Crystallography

<sup>\*</sup> Present address: Department of Biochemistry, Harvard University, Cambridge, MA 02138, USA.

<sup>&</sup>lt;sup>+</sup> Present address: Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA.

<sup>‡</sup> Department of Medicinal Chemistry. Present address: Abbott Laboratories, North Chicago, Illinois 60064, USA.

 $Hsbh^-$ : monoanion of  $H_2sbh$  (the  $H_2$  here signifying the two acidic hydrogens).

standing for 4 days at room temperature and then for 3 days at 278 K it yielded dark-green crystals of the product. A crystal of dimensions  $0.52(010) \times$  $0.29 (011) \times 0.29 (021) \times 0.19 (101)$  mm was mounted on a glass fiber along b. Green-gray crystals of (B)were obtained as previously described (Iskander, El-Aggan, Refaat & El Sayed, 1975), by mixing and refluxing ethanolic solutions containing equimolar amounts of H<sub>2</sub>sbh and CuCl<sub>2</sub>.2H<sub>2</sub>O and allowing the resulting solution to stand overnight at room temperature. A crystal of dimensions  $0.05 \times 0.15 \times 0.5$  mm was selected and mounted along b. Precession and Weissenberg photographs were used for both compounds to obtain rough cell constants and to determine the space groups [absences for (B): 0k0, k = 2n + 1, and h0l, h = 2n + 1]. Picker FACS-I diffractometer with Nb-filtered (0.007 cm) Mo  $K\alpha$  radiation. Cell constants by least squares with high-2 $\theta$  reflections at  $\pm 2\theta$ , 9 pairs for (A) and 15 for (B). Intensity data by  $\theta$ -2 $\theta$  scans at 2° min<sup>-1</sup> in 2 $\theta$ . For (A), 4327 inequivalent reflections in the range  $2^{\circ} < 2\theta < 57.5^{\circ}$  (+h, +k, +l, with 10 s background counts fore and aft (scan width 1.4° plus  $\alpha_1 - \alpha_2$  dispersion) in the range 2° <  $2\theta < 35^{\circ}$  and 20 s background counts for the rest. Five standards monitored every 300 reflections gave p = 0.5%, which was used in  $\sigma_l^2 = s + t^2 b + p^2 I^2$ , where  $\sigma_{i}$  is the standard deviation of the integrated intensity, s the scan count, t the scan/total-background time ratio, and b the total background count. For (B), 1996 inequivalent reflections in the range  $3^{\circ} < 2\theta < 45^{\circ}$  (+h, +k, +l) with scan width 1.85° (plus  $\alpha_1 - \alpha_2$  dispersion), 20 s background counts, and four standards monitored every 300 reflections and giving p = 0.5%. Programs of the XRAY system (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976) were used for data reduction and all subsequent calculations (except

Analysis of the Patterson maps gave the sites of the metal atoms, which were then used to begin series of density maps from which the positions of all the other non-hydrogen atoms were obtained (Tables 1 and 2).\* For (A), 10 of the 15 H atoms were placed with program CALCAT (Watenpaugh, 1972) at C-H = 0.95 Å, after which the remaining five (1, 151, 152, 153, 31) were found in a difference map and adjusted to a bond length of 0.95 Å (isotropic U values refined for all H atoms except 151, 152, 153, and 31, and all H positions held invariant except for 2, 8, 10, and 12). Full-matrix, least-squares refinement on F with  $1/\sigma^2(F_o)$ weights, f', and f'', rejecting 587 reflections with  $F_o$  or  $|F_c| < 3\sigma(F_a)$  led to R = 0.043, wR = 0.036, S = 2.64,

placing the H atoms).

Table 1. Atomic coordinates and  $U_{eq}$  values (Å<sup>2</sup> × 10<sup>2</sup>) for (A)

|       | $U_{\mathrm{eq}} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$ |             |             |                    |  |  |  |
|-------|---------------------------------------------------------------------------------------------------|-------------|-------------|--------------------|--|--|--|
|       | x                                                                                                 | у           | Z           | $U_{eq}^{\dagger}$ |  |  |  |
| Fe    | 0.15045 (7)                                                                                       | 0.21569 (4) | 0.09484 (5) | 3.0                |  |  |  |
| Cl(1) | 0.06411 (12)                                                                                      | 0.37712 (6) | 0.12180 (9) | 4.1                |  |  |  |
| Cl(2) | -0.19182 (12)                                                                                     | 0.13442 (6) | 0.15789 (9) | 3.9                |  |  |  |
| O(1)  | 0.2008 (3)                                                                                        | 0.2674 (2)  | 0.2997 (2)  | 3.6                |  |  |  |
| O(2)  | 0.2111 (3)                                                                                        | 0.1732 (2)  | -0.1057 (2) | 3.8                |  |  |  |
| O(3)  | 0-2529 (3)                                                                                        | 0.0746 (2)  | 0.0842 (2)  | 4.2                |  |  |  |
| N(1)  | 0-5384 (4)                                                                                        | 0.3154 (2)  | 0.1983 (3)  | 3.2                |  |  |  |
| N(2)  | 0.4799 (4)                                                                                        | 0.2704 (2)  | 0.0696 (3)  | 2.9                |  |  |  |
| C(1)  | 0-4299 (5)                                                                                        | 0.3537(2)   | 0.4584 (3)  | 3.1                |  |  |  |
| C(2)  | 0.6331 (5)                                                                                        | 0.3835 (3)  | 0.4793 (4)  | 4.3                |  |  |  |
| C(3)  | 0.6640 (6)                                                                                        | 0.4243 (3)  | 0.6169 (4)  | 5.2                |  |  |  |
| C(4)  | 0-4935 (7)                                                                                        | 0.4339 (3)  | 0.7329 (4)  | 5.2                |  |  |  |
| C(5)  | 0.2911 (6)                                                                                        | 0.4044 (3)  | 0.7128 (4)  | 5.0                |  |  |  |
| C(6)  | 0.2584 (5)                                                                                        | 0.3647 (3)  | 0.5762 (3)  | 4.1                |  |  |  |
| C(7)  | 0-3837 (5)                                                                                        | 0.3100 (2)  | 0.3152(3)   | 2.9                |  |  |  |
| C(8)  | 0.6290 (5)                                                                                        | 0.2581 (2)  | -0.0463(3)  | 3.4                |  |  |  |
| C(9)  | 0-5890 (5)                                                                                        | 0.2104 (2)  | -0.1861 (3) | 3.1                |  |  |  |
| C(10) | 0.7669 (5)                                                                                        | 0.2036 (3)  | -0.3038 (4) | 4.3                |  |  |  |
| C(11) | 0.7427 (6)                                                                                        | 0.1628 (3)  | -0.4414 (4) | 5.0                |  |  |  |
| C(12) | 0.5411 (6)                                                                                        | 0.1285 (3)  | -0.4650 (4) | 4.8                |  |  |  |
| C(13) | 0.3661 (5)                                                                                        | 0.1319 (3)  | -0.3531 (3) | 4 · 1              |  |  |  |
| C(14) | 0.3844 (5)                                                                                        | 0.1719 (2)  | -0.2110(3)  | 3.2                |  |  |  |
| C(15) | 0.2184 (6)                                                                                        | 0.0277 (3)  | 0.1985 (4)  | 5.8                |  |  |  |

† E.s.d.'s about 10%.

Table 2. Atomic coordinates and  $U_{eq}$  values (Å<sup>2</sup> × 10<sup>2</sup>) for (B)

| $U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$ |             |              |                     |          |  |  |  |  |
|----------------------------------------------------------------------------------------------|-------------|--------------|---------------------|----------|--|--|--|--|
|                                                                                              | x           | У            | z                   | $U_{eq}$ |  |  |  |  |
| Cu                                                                                           | 0.0600(1)   | -0.1802(2)   | -0.3708(1)          | 3.7      |  |  |  |  |
| Cl                                                                                           | 0.1833 (2)  | -0.1111(5)   | -0.3066(2)          | 4.8      |  |  |  |  |
| O(1)                                                                                         | 0.0001 (5)  | -0.1073(12)  | -0.2410(6)          | 4.4      |  |  |  |  |
| O(2)                                                                                         | 0.1045 (4)  | -0.2731 (11) | -0.5000 (6)         | 4.0      |  |  |  |  |
| O(3)                                                                                         | 0.2522 (5)  | 0.0167 (13)  | -0.5464 (6)         | 5.3      |  |  |  |  |
| N(1)                                                                                         | -0.1094(5)  | -0.1292 (13) | -0.3512(8)          | 3.3      |  |  |  |  |
| N(2)                                                                                         | -0.0513(5)  | -0.1924 (15) | -0.4259 (8)         | 3.1      |  |  |  |  |
| C(1)                                                                                         | -0.1314 (8) | -0.0290 (20) | -0.1679 (10)        | 4.2      |  |  |  |  |
| C(2)                                                                                         | -0.2131(7)  | 0.0170 (19)  | -0.1809 (10)        | 4.6      |  |  |  |  |
| C(3)                                                                                         | -0.2553 (8) | 0.0866 (21)  | -0·0948 (11)        | 5.8      |  |  |  |  |
| C(4)                                                                                         | -0.2224 (8) | 0.0909 (21)  | 0.0067 (11)         | 5.8      |  |  |  |  |
| C(5)                                                                                         | -0.1438 (9) | 0.0333 (24)  | 0.0195 (11)         | 7.2      |  |  |  |  |
| C(6)                                                                                         | -0.0961 (7) | -0.0345 (20) | -0.0667 (10)        | 4.9      |  |  |  |  |
| C(7)                                                                                         | -0.0768 (8) | -0.0959 (17) | -0.2557(10)         | 3.6      |  |  |  |  |
| C(8)                                                                                         | -0.0787 (6) | -0.2453(17)  | -0.5206 (10)        | 3.4      |  |  |  |  |
| C(9)                                                                                         | -0.0212 (7) | -0.3102(18)  | -0.5999 (9)         | 3.1      |  |  |  |  |
| C(10)                                                                                        | -0.0562 (7) | -0.3629(21)  | -0.6984 (10)        | 5.1      |  |  |  |  |
| C(11)                                                                                        | -0.0105 (8) | -0.4236 (20) | -0.7819 (11)        | 5.6      |  |  |  |  |
| C(12)                                                                                        | 0.0743 (9)  | -0.4299 (20) | -0.7715 (11)        | 5.6      |  |  |  |  |
| C(13)                                                                                        | 0.1098 (7)  | -0.3795 (18) | -0.6761 (10)        | 4.1      |  |  |  |  |
| C(14)                                                                                        | 0.0657 (7)  | -0.3138(18)  | <b>−0</b> •5894 (9) | 2.8      |  |  |  |  |
|                                                                                              |             |              | _                   |          |  |  |  |  |

† E.s.d.'s about 15%.

last-cycle  $(\Delta/\sigma)_{ave} = 0.004$  and  $(\Delta/\sigma)_{max} = 0.05$ , and subsequent difference map with no peak greater than  $0.5 \text{ e} \text{ Å}^{-3}$  except in the vicinity of the Fe and Cl atoms, where the highest peaks were 1.7 and 0.7 e Å<sup>-3</sup>. respectively. For (B), the H atoms (except for 1, 31, and 32, which were obtained from a difference map) were placed with CALCAT at 1.0 Å from their respective C atoms; all were assigned isotropic Gaussian amplitudes of  $U = 0.10 \text{ Å}^2$  and held invariant. The refinement, as described above, rejecting 746 reflections

<sup>\*</sup> Lists of  $F_{q}$  and  $F_{c}$ , H positions and U values, and anisotropic U values for the other atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39262 (39 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

with  $F_o$  or  $|F_c| < 3\sigma(F)$  and 35 with XRAY 'WDF' > 12 - *i.e.* with  $\Delta(F)/\sigma(F_o) > 12/2.8 = 4.3$ , in view of FREL SC = 2.8 (this second set of rejected reflections were included in the R values and final difference map)\* - led to R = 0.091, wR = 0.065, S = 1.45, last-cycle  $(\Delta/\sigma)_{ave} = 0.025$  and  $(\Delta/\sigma)_{max} = 0.24$ , and subsequent difference-map density everywhere less than  $0.7 \text{ e} \text{ Å}^{-3}$ . The ellipsoid of C(14), Fig. 2, is thin (U went non-positive-definite and was automatically 'corrected' by XRAY program CRYLSO). The trouble persisted when, with the idea that the refinement might have stalled on some wrong F signs, the model was arbitrarily distorted and re-refined. This not highly unusual difficulty may be a matter of routine random errors in the intensities, the total number of variables being 190 and the apparent error in the U eigenvalue being only  $3\sigma$  or maybe less (some of the apparently normal  $U_{ii}/\sigma_{U_{ii}}$  values are only a little more than 3). The probability of one of the variables being in error by  $3\sigma$ is then about  $190 \times 0.0014 = 0.27$ , not extremely small.

No absorption correction was made in either case. Anomalous-dispersion factors from *International Tables for X-ray Crystallography* (1974); form factors for Cu and Fe from Doyle & Turner (1968), for Cl, O, N, and C from Cromer & Mann (1968), and for H from Stewart, Davidson & Simpson (1965).

**Discussion.** In both (A) and (B), Hsbh<sup>-</sup> is bound to the metal ion by O(1), O(2), and N(2) in an approximately planar arrangement (Tables 3, 4 and 5). The uncoordinated hydrazidic nitrogen atom N(1) remains protonated, so that the organic ligand bears a formal electronic charge of -1. The remaining coordination site in the Hsbh<sup>-</sup> plane is occupied, in both structures, by a chloride ion (Figs. 1 and 2). In (A), the coordination polyhedron is completed by a second chloride ion Cl(1) and the O atom of a methanol molecule.

The octahedral structure of (A) is distorted tetragonally along the O(3)-Fe-Cl(1) axis, the Fe atom being displaced 0.134 Å from the least-squares equatorial plane defined by O(1), N(2), O(2), Cl(2), and Fe (Tables 3 and 5), as well as in the equatorial plane, angle O(1)-Fe-O(2) being only  $159.3^{\circ}$ , with O(2)-Fe-N(2) larger than O(1)-Fe-N(2), as would be expected from the different sizes of the two chelate rings.



Fig. 1. ORTEP drawing (Johnson, 1965) of [FeCl<sub>2</sub>(Hsbh)-(CH<sub>3</sub>OH)] (A). Note that the numbering of the two chloride ions is the reverse of that used in the preliminary communication of this structure (Aruffo *et al.*, 1982).



Fig. 2. ORTEP drawing of the [CuCl(Hsbh)] unit present in (B).



Fig. 3. Line drawings of the title compounds and their analogs.



Fig. 4. Packing of (A), viewed along c. One of the  $N(1)-H\cdots Cl(1)$  hydrogen bonds and two of the  $O(3)-H\cdots Cl(2)$  are marked by solid lines.

<sup>\*</sup> The output  $F_o$  vs  $F_c$  listing from the XRAY least-squares program has a column headed 'WDF' and described in the XRAY manual as  $(F_o - F_c)/\sigma(F_o)$  (in XRAY 'W' is the square root of the Gaussian weight), but which is actually this quantity multiplied by the relative scale factor  $F/F_{rel} = F/\sqrt{(I/Lp)} =$ 'FREL SC'. Whereas the manual says that a reflection will be rejected 'if its weighted delta-F is larger than' a quantity specified by the user (here 12), it is 'WDF' that is tested, and, contrary to reasonable expectation, reflections so rejected from the refinement are nonetheless included in the statistics of fit. Many users of XRAY are doubtless unaware of this.

In an analogous complex with two five-membered chelate rings, (C) (Fig. 3), the O(1)-Fe-O(2) angle is even smaller at 151° (Bertrand, Fujita, Eller & VanDerveer, 1978). Because O-Fe-O is less than 180°, contacts between the equatorial chloride ion and

O(1) and O(2) are only slightly shorter than the sum of the van der Waals radii of oxygen and chlorine. In contrast, distances between the axial chloride ion and the equatorial ligating atoms are considerably less than the respective sums of van der Waals radii. This difference in ligand-ligand repulsions may account for the equatorial Fe-Cl bond being significantly shorter than the axial Fe-Cl bond in both (A) and (C). The intermolecular hydrogen bonding of (A) forms a ladder pattern (Fig. 4): each side piece, as deep as the length of

# Table 3. Bond distances (Å) and angles (°) for (A)

Fe-N(2)

Fe-Cl(1)

Fe-Cl(2)

2.119(2)

2.345 (1)

2.303(1)

Coordination polyhedron

2.068 (2)

1.874 (2)

2.171 (3)

Fe-O(1)

Fe--O(2)

Fe-O(3)

Ligand

## Table 4. Bond distances (Å) and angles (°) for (B)

| $ \begin{array}{c} C(7)-C(1) & 1.477 (4) & C(8)-C(9) & 1.434 (4) \\ C(1)-C(2) & 1.379 (5) & C(9)-C(10) & 1.414 (4) \\ Cu-O(1) & 1.962 (8) & Cu-N(2) & 1.933 (9) \\ C(2)-C(3) & 1.384 (5) & C(10)-C(11) & 1.370 (5) & Cu-O(2) & 1.891 (8) & Cu-C1 & 2.211 (4) \\ C(3)-C(4) & 1.374 (5) & C(1)-C(12) & 1.381 (6) \\ C(5)-C(6) & 1.371 (6) & C(12)-C(13) & 1.369 (4) & Ligand \\ C(5)-C(6) & 1.378 (5) & C(13)-C(14) & 1.399 (5) & O(1)-C(7) & 1.263 (5) & N(2)-C(8) & 1.323 (15) \\ C(7)-N(1) & 1.336 (4) & C(14)-O(2) & 1.326 (3) & C(1)-C(2) & 1.373 (17) & C(9)-C(10) & 1.410 (17) \\ N(1)-N(2) & 1.380 (4) & C(15)-O(3) & 1.437 (6) & C(2)-C(3) & 1.370 (19) & C(10)-C(11) & 1.352 (19) \\ Coordination polyhedron & & C(3)-C(4) & 1.381 (20) & C(11)-C(12) & 1.381 (20) \\ C(1)-Fe-C(1) & 89 \cdot 43 (8) & C(2)-Fe-C(1) & 96 \cdot 73 (4) & C(5)-C(6) & 1.411 (19) & C(13)-C(14) & 1.381 (17) \\ O(1)-Fe-O(3) & 85 \cdot 54 (10) & C(2)-Fe-O(3) & 86 \cdot 95 (7) & C(6)-C(1) & 1.394 (18) & C(14)-C(9) & 1.415 (15) \\ N(2)-Fe-C(1) & 93 \cdot 97 (8) & O(1)-Fe-N(2) & 74 \cdot 409 & C(7)-N(1) & 1.332 (16) \\ C(2)-Fe-C(1) & 93 \cdot 97 (8) & O(1)-Fe-N(2) & 74 \cdot 409 & C(7)-N(1) & 1.332 (16) \\ C(2)-Fe-C(1) & 95 \cdot 97 (9) & O(2)-Fe-C(2) & 102 \cdot 76 (7) \\ O(2)-Fe-C(1) & 95 \cdot 97 (9) & O(2)-FE-C(2) & 102 \cdot 76 (7) \\ O(2)-Fe-C(1) & 95 \cdot 93 (19) & O(3)-FE-C(1) & 174 \cdot 06 (7) & O(1)-Cu-O(2) & 171 \cdot 8 (3) & N(2)-Cu-O(1) & 81 \cdot 3 (4) \\ N(2)-Fe-C(2) & 165 \cdot 53 (9) & O(3)-FE-C(1) & 174 \cdot 06 (7) & O(1)-Cu-O(2) & 171 \cdot 8 (3) & N(2)-Cu-O(2) & 91 \cdot 9 (4) \\ N(2)-Fe-C(2) & 165 \cdot 53 (9) & O(3)-FE-C(1) & 174 \cdot 06 (7) & O(1)-Cu-O(2) & 171 \cdot 8 (3) & N(2)-Cu-O(2) & 91 \cdot 9 (4) \\ N(2)-Fe-C(2) & 165 \cdot 53 (9) & O(3)-FE-C(1) & 123 \cdot 13) & Cu-O(1)-C(7) & 112 \cdot 5 (8) & Cu-N(2)-C(8) & 130 \cdot 4 (7) \\ C(7)-O(1)-FE & 118 \cdot 3 (2) & C(8)-C(9)-C(14) & 123 \cdot 13) & Cu-O(1)-C(7) & 112 \cdot 5 (8) & Cu-N(2)-C(8) & 130 \cdot 4 (7) \\ C(7)-O(1) & 118 \cdot 5 (3) & N(2)-C(8)-C(9) & 123 \cdot 13) & Cu-O(1)-C(7) & 112 \cdot 5 (8) & Cu-N(2)-C(8) & 130 \cdot 4 (7) \\ C(7)-C(2) & 115 \cdot 4 (2) & C(8)-C(9)-C(14) & 123 \cdot 6 (12) & O(1)-C(7) & 112 \cdot 5 (8) & CU-N(2)-C(8) & 130 \cdot 4 (7) \\ C(7)-C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O(1) = C(7)                            | 1.256 (4)                              | N(2) = C(8)                                | 1.203 (3)                          | 14010 11 20                              | and anotalitees | (                                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------|------------------------------------|------------------------------------------|-----------------|------------------------------------------------|-----------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(7) - C(1)                            | 1.477(4)                               | C(8) - C(9)                                | 1.434(4)                           | Coordination pol                         | lyhedron        |                                                |                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(1) - C(2)                            | 1.379 (5)                              | C(9) - C(10)                               | 1.414 (4)                          | $C_{\rm m} = O(1)$                       | 1 062 (8)       | $C_{\rm H} = N(2)$                             | 1 022 (0)                               |
| $\begin{array}{c} C(3) = C(4) & (1.574) (5) & (C(1) = C(12) & (1.381) (5) & (C(1) = C(12) & (1.691) & (C(1-C) & (2.211) (6) \\ C(4) = C(5) & (1.371) (6) & (C(1) = C(13) & (1.369) (4) & Ligand \\ C(5) = C(6) & (1.378) (5) & C(13) = C(14) & (1.399) (5) & O(1) = C(7) & (1.263) (5) & N(2) = C(8) & (1.323) (15) \\ C(6) = C(1) & (1.390) (4) & C(14) = C(2) & (1.326) (3) & C(7) = C(1) & (1.489) (18) & C(8) = C(9) & (1.437) (16) \\ C(7) = N(1) & (1.336) (4) & C(14) = O(2) & (1.326) (3) & C(7) = C(1) & (1.489) (18) & C(8) = C(9) & (1.437) (16) \\ C(7) = N(1) & (1.336) (4) & C(15) = O(3) & (1.437) (6) & C(2) = C(3) & (1.370) (19) & C(10) = C(11) & (1.352) (19) \\ C(1) = Fe = C(1) & 89.43 (8) & C(2) = Fe = C(1) & 96.73 (4) & C(5) = C(6) & (1.411) (19) & C(13) = C(14) & (1.381) (20) \\ O(1) = Fe = C(1) & 93.97 (8) & O(1) = Fe = N(2) & 74.40 (9) & C(7) = N(1) & (1.332) (16) & C(14) = C(13) & (1.375) (19) \\ O(2) = Fe = O(3) & 85.54 (10) & C(2) = Fe = N(2) & 86.95 (7) & C(6) = C(1) & (1.394) (18) & C(14) = C(9) & 1.415 (15) \\ N(2) = Fe = O(3) & 86.93 (7) & O(0) = Ce = N(2) & 86.95 (7) & N(1) = N(2) & (1.394) (18) & C(14) = C(9) & (1.415) (15) \\ N(2) = Fe = O(3) & 86.93 (7) & O(0) & (1) = Fe = N(2) & 86.95 (7) & N(1) = N(2) & (1.411) (19) & C(14) = C(9) & (1.415) (15) \\ N(2) = Fe = O(1) & 93.97 (8) & O(1) = Fe = N(2) & 86.95 (7) & C(6) = C(11) & 1.394 (18) & C(14) = C(9) & (1.415) (13) \\ O(2) = Fe = C(1) & 96.97 (9) & O(3) = Fe = C(1) & 102.76 (7) & N(1) = N(2) & (1.30) & N(2) = Cu = O(1) & 81.34 (4) \\ O(2) = Fe = O(1) & 159.31 (9) & O(3) = Fe = C(1) & 174.06 (7) & O(1) = Cu = O(2) & 171.8 (3) & N(2) = Cu = O(1) & 81.34 (4) \\ O(2) = Fe = O(1) & 159.31 (9) & O(3) = Fe = C(1) & 174.06 (7) & O(1) = C(7) & 112.5 (8) & Cu = N(2) = C(18) & 177.08 & C(10) = C(11) & 21.94 (13) & C(10) = C(11) & 22.94 (13) & N(2) = C(10) = C(11) & 22.94 (13) & C(10) = C(11) & 22.94 (13) & C(11) = C(12) = C(11) & 123.94 (12) & C(11) = C(12) & C(13) & C(11) = C(12) & C(13) & C(11) = C(11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(2) - C(3)                            | 1.384 (5)                              | C(10) - C(11)                              | 1.370 (5)                          | Cu = O(1)                                | 1.801 (8)       | Cu = N(2)                                      | 1.933(9)                                |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(3) - C(4)                            | 1.374 (5)                              | C(11) - C(12)                              | 1.381 (6)                          | Cu=O(2)                                  | 1,031 (9)       |                                                | 2.211 (4)                               |
| $ \begin{array}{c} C(5) - C(6) & 1 \cdot 378 (5) & C(13) - C(14) & 1 \cdot 399 (5) & O(1) - C(7) & 1 \cdot 263 (5) & N(2) - C(8) & 1 \cdot 323 (15) \\ C(6) - C(1) & 1 \cdot 390 (4) & C(14) - C(9) & 1 \cdot 409 (5) & C(7) - C(1) & 1 \cdot 489 (18) & C(8) - C(9) & 1 \cdot 437 (16) \\ C(7) - N(1) & 1 \cdot 336 (4) & C(14) - C(2) & 1 \cdot 326 (3) & C(1) - C(2) & 1 \cdot 373 (17) & C(9) - C(10) & 1 \cdot 410 (17) \\ N(1) - N(2) & 1 \cdot 380 (4) & C(15) - O(3) & 1 \cdot 437 (6) & C(2) - C(3) & 1 \cdot 370 (19) & C(10) - C(11) & 1 \cdot 352 (19) \\ Coordination polyhedron & C(3) - C(4) & 1 \cdot 381 (20) & C(11) - C(12) & 1 \cdot 381 (20) \\ C(1) - Fe - C(1) & 89 \cdot 43 (8) & C(12) - Fe - O(3) & 86 \cdot 95 (7) & C(6) - C(6) & 1 \cdot 411 (19) & C(13) - C(14) & 1 \cdot 381 (17) \\ O(1) - Fe - O(3) & 85 \cdot 54 (10) & C(2) - Fe - O(3) & 86 \cdot 95 (7) & C(6) - C(6) & 1 \cdot 411 (19) & C(13) - C(14) & 1 \cdot 381 (17) \\ O(2) - Fe - O(3) & 81 \cdot 64 (10) & O(2) - Fe - N(2) & 85 \cdot 51 (9) & N(1) - N(2) & 1 \cdot 401 (13) \\ O(2) - Fe - O(3) & 86 \cdot 73 (10) & O(1) - Fe - N(2) & 95 \cdot 95 (6) & Coordination polyhedron \\ O(2) - Fe - O(1) & 159 \cdot 31 (9) & O(3) - Fe - C1(1) & 174 \cdot 06 (7) & O(1) - Cu - O(2) & 171 \cdot 8 (3) & N(2) - Cu - O(1) & 81 \cdot 3 (4) \\ O(1) - C(7) - N(1) & 118 \cdot 5 (3) & N(2) - C(8) - C(9) & 123 \cdot 1 (3) & Cu - O(1) - C(7) & 112 \cdot 5 (8) & Cu - N(2) - C(8) & 130 \cdot 4 (7) \\ O(1) - C(7) - N(1) & 118 \cdot 5 (3) & N(2) - C(8) - C(9) & 123 \cdot 1 (3) & Cu - O(1) - C(7) & 112 \cdot 5 (8) & Cu - N(2) - C(8) & 130 \cdot 4 (7) \\ O(1) - C(7) - N(1) & 118 \cdot 5 (3) & N(2) - C(8) - C(9) - C(14) & 123 \cdot 6 (2) & O(1) - C(7) - N(1) & 120 \cdot 9 (11) & N(2) - C(8) - C(9) & 119 \cdot 6 (3) \\ O(1) - C(7) - N(1) & 118 \cdot 5 (3) & N(2) - C(8) - C(9) - C(14) & 123 \cdot 6 (2) & O(1) - C(7) - N(1) & 120 \cdot 9 (11) & N(2) - C(8) - C(9) & 119 \cdot 6 (3) \\ O(1) - C(7) - N(1) & 118 \cdot 5 (3) & N(2) - C(8) - C(9) - C(10) & 117 \cdot 1 (3) & Ligand \\ N(1) - N(2) - C(8) & 117 \cdot 8 (2) & C(8) - C(9) - C(10) & 117 \cdot 1 (3) & Ligand \\ N(1) - N(2) - C(3) & 118 \cdot 1 (12) & C(8) - C(9) - C(10) & 115 \cdot 5 (10) \\ C(3) - C(4) - C(5) & 120 \cdot 1 (4) & C(10) - C(11) - C(12) & 113 \cdot 3 & C(1) - C(1) - C(12) & 118 \cdot 5 (13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(4) - C(5)                            | 1.371 (6)                              | C(12) - C(13)                              | 1.369 (4)                          | Ligand                                   |                 |                                                |                                         |
| $\begin{array}{c} C(6)-C(1) & 1.390 \ (a) \\ C(7)-N(1) & 1.336 \ (d) \\ C(14)-Q(2) & 1.326 \ (d) \\ C(14)-Q(2) & 1.326 \ (d) \\ C(10)-C(2) & 1.373 \ (17) \\ C(9)-C(10) & 1.410 \ (17) \\ N(1)-N(2) & 1.380 \ (d) \\ C(15)-Q(3) & 1.437 \ (f) \\ C(15)-Q(3) & 1.437 \ (f) \\ C(10)-C(1) & 1.352 \ (19) \\ C(10)-C(1) & 1.352 \ (19) \\ C(10)-C(1) & 1.352 \ (19) \\ C(10)-C(1) & 1.338 \ (10) \\ C(1)-Fe-C(1) & 96.73 \ (d) \\ C(1)-Fe-C(1) & 93.97 \ (d) \\ C(1)-Fe-C(1) & 96.73 \ (d) \\ C(2)-Fe-C(3) & 85.54 \ (10) \\ C(1)-Fe-C(2) & 18.51 \ (q) \\ N(2)-Fe-C(1) & 93.97 \ (d) \\ C(1)-Fe-C(1) & 96.73 \ (d) \\ C(2)-Fe-C(1) & 93.97 \ (d) \\ C(2)-Fe-C(2) & 102.76 \ (f) \\ N(2)-Fe-C(1) & 96.73 \ (q) \\ O(2)-Fe-C(2) & 159.31 \ (q) \\ O(2)-Fe-C(2) & 102.76 \ (f) \\ O(2)-Fe-C(2) & 159.31 \ (q) \\ O(2)-Fe-C(2) & 105.53 \ (q) \\ O(1)-Fe-C(2) & 128.82 \ (2) \\ Chelate rings \\ C(7)-O(1)-Fe & 118.5 \ (2) \\ C(8)-N(2)-Fe & 128.8 \ (2) \\ C(7)-N(1) -N(2) & 113.6 \ (3) \\ N(2)-C(2)-C(2) & 118.5 \ (3) \\ N(2)-C(2)-C(3) & 118.5 \ (3) \\ N(2)-C(8)-C(9)-C(14) & 123.6 \ (2) \\ O(1)-C(7)-N(1) & 120.9 \ (11) \\ N(2)-Fe & 113.1 \ (2) \\ C(8)-C(9)-C(14) & 123.6 \ (2) \\ O(1)-C(7)-N(1) & 120.9 \ (11) \\ N(2)-C(8) & C(9)-C(14) & 123.6 \ (2) \\ O(1)-C(7)-N(1) & 120.9 \ (11) \\ N(2)-C(8) & C(9)-C(14) & 125.6 \ (10) \\ N(1)-N(2)-Fe & 113.1 \ (2) \\ C(9)-C(14)-C(2) & 122.6 \ (3) \\ C(7)-N(1)-N(2) & 113.0 \ (9) \\ C(8)-C(9)-C(14) & 125.6 \ (10) \\ N(1)-N(2)-C(8) & 117.7 \ (8) \\ C(14)-O(2)-C(8) & 117.7 \ (8) \\ C(14)-O(2)-C(1) & 122.5 \ (10) \\ N(1)-N(2)-C(6) & 119.4 \ (3) \\ C(1)-C(2)-C(3) & 118.4 \ (12) \\ C(8)-C(9)-C(10) & 117.1 \ (3) \\ C(3)-C(4)-C(5) & 118.4 \ (12) \\ C(8)-C(9)-C(10) & 115.5 \ (10) \\ C(1)-C(7) & 117.5 \ (3) \\ C(1)-C(1)-C(1) & 117.5 \ (3) \\ C(1)-C(1)-C(1) & 117.5 \ (3) \\ C(1)-C(2)-C(3) & 118.4 \ (12) \\ C(1)-C(1)-C(1) & 118.7 \ (13) \\ C(1)-C(1)-C(1) & 115.5 \ (10) \\ C(1)-C(7) & 117.5 \ (3) \\ C(1)-C(1)-C(1) & 117.5 \ (3) \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(5)-C(6)                              | 1.378 (5)                              | C(13) - C(14)                              | 1.399 (5)                          | O(1) - C(7)                              | 1.263 (5)       | N(2)-C(8)                                      | 1.323 (15)                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(6) - C(1)                            | 1.390 (4)                              | C(14) - C(9)                               | 1.409 (5)                          | C(7) - C(1)                              | 1.489 (18)      | C(8)-C(9)                                      | 1.437 (16)                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(7) - N(1)                            | 1.336 (4)                              | C(14) - O(2)                               | 1.326 (3)                          | C(1) - C(2)                              | 1.373 (17)      | C(9) - C(10)                                   | 1.410 (17)                              |
| $ \begin{array}{c} \text{Coordination polyhedron} \\ \text{O(1)} - \text{Fe} - \text{Cl}(1) & \text{89} \cdot 43 (8) \\ \text{O(1)} - \text{Fe} - \text{Cl}(1) & \text{96} \cdot 73 (4) \\ \text{O(1)} - \text{Fe} - \text{O(3)} & \text{85} \cdot 54 (10) \\ \text{Cl}(2) - \text{Fe} - \text{Ol}(3) & \text{86} \cdot 95 (7) \\ \text{O(1)} - \text{Fe} - \text{O(3)} & \text{85} \cdot 54 (10) \\ \text{Cl}(2) - \text{Fe} - \text{Ol}(3) & \text{86} \cdot 95 (7) \\ \text{Cl}(2) - \text{Fe} - \text{Ol}(3) & \text{86} \cdot 95 (7) \\ \text{Cl}(2) - \text{Fe} - \text{Ol}(3) & \text{86} \cdot 95 (7) \\ \text{Cl}(2) - \text{Fe} - \text{Ol}(3) & \text{86} \cdot 95 (7) \\ \text{Cl}(2) - \text{Fe} - \text{Ol}(3) & \text{81} \cdot 64 (10) \\ \text{O(2)} - \text{Fe} - \text{Ol}(2) & \text{74} \cdot 40 (9) \\ \text{Cl}(2) - \text{Fe} - \text{Ol}(3) & \text{81} \cdot 64 (10) \\ \text{O(2)} - \text{Fe} - \text{Ol}(2) & \text{10} \cdot 25 \cdot 51 (9) \\ \text{O(2)} - \text{Fe} - \text{Ol}(3) & \text{81} \cdot 64 (10) \\ \text{O(2)} - \text{Fe} - \text{Cl}(2) & 102 \cdot 76 (7) \\ \text{O(2)} - \text{Fe} - \text{Ol}(3) & \text{86} \cdot 73 (10) \\ \text{O(1)} - \text{Fe} - \text{Cl}(2) & 102 \cdot 76 (7) \\ \text{O(2)} - \text{Fe} - \text{Ol}(1) & 159 \cdot 31 (9) \\ \text{O(3)} - \text{Fe} - \text{Cl}(2) & 174 \cdot 66 (7) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 171 \cdot 8 (3) \\ \text{N(2)} - \text{Cu} - \text{Ol}(2) & 171 \cdot 8 (3) \\ \text{N(2)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 171 \cdot 8 (3) \\ \text{N(2)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 171 \cdot 8 (3) \\ \text{N(2)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 171 \cdot 8 (3) \\ \text{N(2)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} - \text{Cu} - \text{Ol}(2) & 91 \cdot 94 (3) \\ \text{O(1)} -$ | N(1) - N(2)                            | 1.380 (4)                              | C(15) - O(3)                               | 1.437 (6)                          | C(2) - C(3)                              | 1.370 (19)      | C(10) - C(11)                                  | 1.352 (19)                              |
| $ \begin{array}{c} \text{Correlination polyhedron} \\ O(1)-Fe-Cl(1) \\ O(1)-Fe-Cl(1) \\ O(2)-Fe-Cl(1) \\ O(2)-Fe-Cl(2) \\ O(1)-Cu-Cl \\ O(1)-Cu-Cl \\ O(1)-Cu-Cl \\ O(2)-Cu-Cl \\ O(2)-Cl \\ O(1)-C(2)-Cl \\ O(1)-Cl \\ O(2)-Cl \\ O(1)-Cl \\ O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                        |                                            | . ,                                | C(3) - C(4)                              | 1.381 (20)      | C(11) - C(12)                                  | 1.381 (20)                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coordination pol                       | lyhedron                               |                                            |                                    | C(4) - C(5)                              | 1.349 (21)      | C(12) - C(13)                                  | 1.375 (19)                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(1)-Fe-Cl(1)                          | 89-43 (8)                              | Cl(2)–Fe– $Cl(1)$                          | 96.73 (4)                          | C(5)-C(6)                                | 1.411 (19)      | C(13) - C(14)                                  | 1.381 (17)                              |
| $ \begin{split} & N(2) = Fe - CI(1) & 93.97 (8) & O(1) = Fe - N(2) & 74.40 (9) & C(7) - N(1) & 1.332 (16) & C(14) = O(2) & 1.319 (14) \\ & N(2) = Fe - CI(1) & 96.97 (9) & O(2) = Fe - CI(2) & 102.76 (7) & N(1) = N(2) & 1.401 (13) \\ & O(2) = Fe - O(1) & 159.31 (9) & O(3) = Fe - CI(2) & 95.95 (6) & O(1) = Cu = O(2) & 171.8 (3) & N(2) = Cu = O(1) & 81.3 (4) \\ & O(2) = Fe - O(1) & 159.31 (9) & O(3) = Fe - CI(1) & 174.06 (7) & O(1) = Cu = O(2) & 171.8 (3) & N(2) = Cu = O(1) & 81.3 (4) \\ & O(2) = Fe - O(1) & 159.31 (9) & O(3) = Fe - CI(1) & 174.06 (7) & O(1) = Cu = O(2) & 171.8 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(1) = Cu = O(2) & 171.8 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(1) = Cu = O(2) & 92.6 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(2) = Cu = O(2) & 92.6 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(2) = Cu = O(2) & 92.6 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(2) = Cu = O(2) & 92.6 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(2) = Cu = O(2) & 92.6 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(2) = Cu = O(2) & 92.6 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(2) = Cu = O(2) & 92.6 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(2) = Cu = O(2) & 92.6 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(2) = Cu = O(2) & 92.6 (3) & N(2) = Cu = O(2) & 91.9 (4) \\ & O(1) = N(2) = N(1) & N(2) = C(1) & 112.5 (10) \\ & O(1) = N(2) = V(1) & 113.4 (2) & C(8) = C(9) = C(14) & 123.6 (2) & O(1) = C(7) = N(1) & 120.9 (11) & N(2) = C(8) & 119.6 (9) \\ & N(1) = N(2) = C(8) & 117.8 (2) & C(14) = O(2) = Fe & 136.1 (2) & N(1) = N(2) = U(1) & 110.9 (7) & C(9) = C(14) = O(2) & 123.5 (10) \\ & N(1) = N(2) = C(3) & 119.8 (3) & C(8) = C(9) = C(10) & 117.1 (3) & Ligand \\ & C(2) = C(3) = C(4) & 120.4 (4) & C(9) = C(10) & 117.1 (3) & C(3) = C(4) = C(5) & 118.0 (13) & C(10) = C(11) = C(13) & C(13) = C(14) = C(13) &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(1)-Fe-O(3)                           | 85.54 (10)                             | Cl(2)-Fe-O(3)                              | 86.95 (7)                          | C(6) - C(1)                              | 1.394 (18)      | C(14) - C(9)                                   | 1.415 (15)                              |
| $ \begin{split} & N(2) = Fe - O(3) & 81.64 (10) & O(2) = Fe - N(2) & 85.51 (9) \\ & O(2) = Fe - CI(1) & 96.97 (9) & O(2) = Fe - CI(2) & 102.76 (7) \\ & O(2) = Fe - O(3) & 86.73 (10) & O(1) = Fe - CI(2) & 95.95 (6) \\ & O(2) = Fe - O(3) & 86.73 (10) & O(1) = Fe - CI(2) & 95.95 (6) \\ & O(3) = Fe - CI(2) & 165.53 (9) \\ & O(1) = Cu - CI & 94.9 (3) & N(2) = Cu - O(2) & 91.9 (4) \\ & O(1) = Cu - CI & 94.9 (3) & N(2) = Cu - O(2) & 91.9 (4) \\ & O(2) = Fe - CI(2) & 165.53 (9) \\ & Chelate rings \\ & C(7) = O(1) = Fe & 118.3 (2) & C(8) = N(2) = Fe & 128.8 (2) \\ & C(8) = C(9) = C(14) = 123.1 (3) & Cu = O(1) = C(7) = N(1) & 12.5 (8) & Cu - N(2) = C(8) & 130.4 (7) \\ & O(1) = C(7) = N(1) & 118.5 (3) & N(2) = C(8) = C(9) & 123.1 (3) & Cu = O(1) = C(7) & 112.5 (8) & Cu - N(2) = C(8) & 130.4 (7) \\ & O(1) = C(7) = N(1) & 118.5 (3) & N(2) = C(8) = C(9) = C(14) & 123.6 (2) & O(1) = C(7) = N(1) & 120.9 (11) & N(2) = C(8) = C(9) & 119.6 (9) \\ & N(1) = N(2) = Fe & 113.1 (2) & C(9) = C(14) = O(2) & 122.6 (3) & C(7) = N(1) = N(2) & 113.0 (9) & C(8) = C(9) = C(14) & 125.8 (10) \\ & N(1) = N(2) = C(8) & 117.8 (2) & C(14) = O(2) = Fe & 136.1 (2) & N(1) = N(2) = C(8) & 117.7 (8) & C(14) = O(2) = C(1) & 125.8 (10) \\ & N(1) = N(2) = C(3) & 119.8 (3) & C(8) = C(9) = C(10) & 117.1 (3) & Ligand \\ & C(2) = C(3) = C(4) & 120.4 (4) & C(9) = C(10) = C(11) & 121.0 (3) & C(3) = C(4) = C(3) & 118.1 (12) & C(8) = C(9) = C(10) & 115.5 (10) \\ & C(4) = C(5) = C(6) & 120.0 (3) & C(11) = C(12) = C(13) & 121.0 (3) & C(3) = C(4) = C(5) & 118.0 (13) & C(10) = C(11) = C(13) & 119.5 (13) \\ & C(6) = C(1) = C(7) & 117.5 (3) & C(14) = C(9) = C(10) & 119.3 (3) & C(2) = C(3) = C(4) & 122.8 (12) & C(13) = C(14) = C(2) & 119.5 (13) \\ & C(6) = C(1) = C(7) & 117.5 (3) & C(14) = C(9) = C(10) & 119.5 (3) & C(6) = C(1) = C(7) & 114.9 (11) & C(14) = C(9) = C(10) & 119.5 (10) \\ & C(1) = C(7) = O(1) & 121.6 (2) & C(13) = C(14) = O(2) & 119.5 (3) & C(6) = C(1) = C(7) & 114.9 (11) & C(14) = C(9) = C(10) & 118.6 (10) \\ & C(1) = C(7) = O(1) & 121.6 (2) & C(13) = C(14) = O(2) & 119.5 (3) & C(6) = C($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(2)-Fe-Cl(1)                          | 93.97 (8)                              | O(1) - Fe - N(2)                           | 74.40 (9)                          | C(7) - N(1)                              | 1.332 (16)      | C(14) - O(2)                                   | 1.319 (14)                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(2)–Fe–O(3)                           | 81.64 (10)                             | O(2)-Fe-N(2)                               | 85-51 (9)                          | N(1) - N(2)                              | 1.401 (13)      | - (- ) - (-)                                   | · · · · · · · · · · · · · · · · ·       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(2)-Fe-Cl(1)                          | 96+97 (9)                              | O(2)-Fe-Cl(2)                              | 102.76 (7)                         | ~ · · · · · ·                            |                 |                                                |                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(2)-Fe- $O(3)$                        | 86.73 (10)                             | O(1)-Fe-Cl(2)                              | 95.95 (6)                          | Coordination pol                         | lyhedron        |                                                |                                         |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O(2)-Fe- $O(1)$                        | 159-31 (9)                             | O(3)-Fe-Cl(1)                              | 174.06 (7)                         | O(1)-Cu-O(2)                             | 171.8 (3)       | N(2)-Cu-O(1)                                   | 81.3 (4)                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N(2)-Fe-Cl(2)                          | 165-53 (9)                             |                                            |                                    | O(1)-Cu-Cl                               | 94.9 (3)        | N(2)-Cu-O(2)                                   | 91.9 (4)                                |
| $\begin{array}{c} \text{C(1)-C(1)-Fe} & 118\cdot3 \ (2) & \text{C(8)-N(2)-Fe} & 128\cdot8 \ (2) & \text{Chelate rings} \\ \text{O(1)-C(7)-N(1)} & 118\cdot5 \ (3) & \text{N(2)-C(8)-C(9)} & 123\cdot1 \ (3) & \text{Cu-O(1)-C(7)} & 112\cdot5 \ (8) & \text{Cu-N(2)-C(8)} & 130\cdot4 \ (7) \\ \text{C(7)-N(1)-N(2)} & 115\cdot4 \ (2) & \text{C(8)-C(9)-C(14)} & 123\cdot6 \ (2) & \text{O(1)-C(7)-N(1)} & 120\cdot9 \ (11) & \text{N(2)-C(8)-C(9)} & 119\cdot6 \ (9) \\ \text{N(1)-N(2)-Fe} & 113\cdot1 \ (2) & \text{C(9)-C(14)-O(2)} & 122\cdot6 \ (3) & \text{C(7)-N(1)-N(2)} & 113\cdot0 \ (9) & \text{C(8)-C(9)-C(14)} & 125\cdot8 \ (10) \\ \text{N(1)-N(2)-C(8)} & 117\cdot8 \ (2) & \text{C(14)-O(2)-Fe} & 136\cdot1 \ (2) & \text{N(1)-N(2)-Cu} & 111\cdot9 \ (7) & \text{C(9)-C(14)-O(2)} & 123\cdot5 \ (10) \\ \text{N(1)-N(2)-C(8)} & 117\cdot8 \ (2) & \text{C(14)-O(2)-Fe} & 136\cdot1 \ (2) & \text{N(1)-N(2)-Cu} & 111\cdot9 \ (7) & \text{C(9)-C(14)-O(2)} & 123\cdot5 \ (10) \\ \text{N(1)-N(2)-C(8)} & 117\cdot7 \ (8) & \text{C(14)-O(2)-Cu} & 128\cdot5 \ (7) \\ \text{C(1)-C(2)-C(3)} & 119\cdot8 \ (3) & \text{C(8)-C(9)-C(10)} & 117\cdot1 \ (3) & \text{Ligand} \\ \text{C(2)-C(3)-C(4)} & 120\cdot4 \ (4) & \text{C(9)-C(10)} & 117\cdot1 \ (3) & \text{Ligand} \\ \text{C(2)-C(3)-C(4)} & 120\cdot4 \ (4) & \text{C(9)-C(10)} & 117\cdot1 \ (3) & \text{Ligand} \\ \text{C(2)-C(3)-C(4)} & 120\cdot4 \ (4) & \text{C(9)-C(10)} & 117\cdot1 \ (3) & \text{C(13)-C(4)} & 122\cdot8 \ (12) & \text{C(9)-C(10)} & 115\cdot5 \ (10) \\ \text{C(3)-C(4)-C(5)} & 120\cdot1 \ (4) & \text{C(10)-C(11)} & \text{C(12)} & 119\cdot3 \ (3) & \text{C(2)-C(3)} & \text{C(4)} & 122\cdot8 \ (12) & \text{C(9)-C(10)} & (115\cdot5 \ (10) \\ \text{C(4)-C(5)-C(6)} & 120\cdot0 \ (3) & \text{C(11)-C(12)} & 113\cdot3 \ (3) & \text{C(4)-C(5)} & 118\cdot0 \ (13) & \text{C(10)-C(11)} & 112\cdot9 \ (13) \\ \text{C(6)-C(1)-C(7)} & 117\cdot5 \ (3) & \text{C(13)-C(14)} & \text{C(9)} & 117\cdot9 \ (3) & \text{C(5)-C(6)} & \text{C(1)} & 117\cdot6 \ (12) & \text{C(13)-C(14)} & 123\cdot8 \ (12) \\ \text{C(6)-C(1)-C(7)} & 123\cdot1 \ (3) & \text{C(13)-C(14)-C(9)} & 117\cdot9 \ (3) & \text{C(6)-C(1)} & \text{C(7)} & 114\cdot9 \ (11) & \text{C(13)-C(14)} & \text{C(9)} & 116\cdot5 \ (10) \\ \text{C(1)-C(7)-N(1)} & 119\cdot9 \ (3) & \text{C(13)-C(14)-O(2)} & 119\cdot8 \ (10) \\ \text{C(1)-C(7)-N(1)} & 119\cdot9 \ (3) & \text{C(13)-C(14)-O(2)} & 119\cdot8 \ (10) \\ \text{C(1)-C(7)-N(1)} & 119\cdot9 \ (3) & \text{C(13)-C(14)-O(2)} & 119\cdot8 \ (10) \\ \text{C(1)-C(7)-N(1)} & 119\cdot9 \ (3) & \text{C(13)-C(14)-O(2)} & 119\cdot8 \ (1$                                                                                                                                                                                                                                                                                                                             | Chelate rings                          |                                        |                                            |                                    | O(2)-Cu-Cl                               | 92.6 (3)        | N(2)–Cu–Cl                                     | 169.7 (3)                               |
| $\begin{array}{c} C(1)-C(1)-Fe & 118\cdot5(2) & C(6)-R(2)-Fe & 128\cdot5(2) & C10400 \text{ Imp} \text{S} \end{array} \\ C(1)-C(7)-N(1) & 118\cdot5(3) & N(2)-C(8)-C(9) & 123\cdot1(3) & Cu-O(1)-C(7) & 112\cdot5(8) & Cu-N(2)-C(8) & 130\cdot4(7) \\ C(7)-N(1)-N(2) & 115\cdot4(2) & C(8)-C(9)-C(14) & 123\cdot6(2) & O(1)-C(7) - N(1) & 120\cdot9(11) & N(2)-C(8)-C(9) & 119\cdot6(9) \\ N(1)-N(2)-Fe & 113\cdot1(2) & C(9)-C(14)-O(2) & 122\cdot6(3) & C(7)-N(1)-N(2) & 113\cdot0(9) & C(8)-C(9)-C(14) & 125\cdot8(10) \\ N(1)-N(2)-C(8) & 117\cdot8(2) & C(14)-O(2)-Fe & 136\cdot1(2) & N(1)-N(2)-Cu & 111\cdot9(7) & C(9)-C(14)-O(2) & 123\cdot5(10) \\ Ligand & & N(1)-N(2)-C(8) & 117\cdot7(8) & C(14)-O(2)-Cu & 128\cdot5(7) \\ C(1)-C(2)-C(3) & 119\cdot8(3) & C(8)-C(9)-C(10) & 117\cdot1(3) & Ligand \\ C(2)-C(3)-C(4) & 120\cdot4(4) & C(9)-C(10)-C(11) & 121\cdot0(3) & C(1)-C(2)-C(3) & 118\cdot1(12) & C(8)-C(9)-C(10) & 115\cdot5(10) \\ C(3)-C(4)-C(5) & 120\cdot1(4) & C(10)-C(11)-C(12) & 119\cdot3(3) & C(2)-C(3)-C(4) & 122\cdot8(12) & C(9)-C(10)-C(11) & 122\cdot9(11) \\ C(4)-C(5)-C(6) & 120\cdot0(3) & C(11)-C(12)-C(13) & 121\cdot0(3) & C(3)-C(4)-C(5) & 118\cdot0(13) & C(10)-C(11)-C(12) & 118\cdot7(13) \\ C(5)-C(6)-C(1) & 120\cdot3(3) & C(12)-C(13)-C(14) & 121\cdot4(3) & C(4)-C(5)-C(6) & 121\cdot9(13) & C(11)-C(12)-C(13) & 119\cdot5(13) \\ C(6)-C(1)-C(2) & 119\cdot4(3) & C(13)-C(14)-C(9) & 117\cdot9(3) & C(5)-C(6)-C(1) & 117\cdot6(12) & C(12)-C(13)-C(14) & 123\cdot8(12) \\ C(6)-C(1)-C(7) & 117\cdot5(3) & C(14)-C(9)-C(10) & 119\cdot3(3) & C(6)-C(1)-C(7) & 114\cdot9(11) & C(13)-C(14)-C(9) & 116\cdot5(10) \\ C(2)-C(1)-C(7) & 121\cdot6(2) & C(15)-O(3)-Fe & 127\cdot7(2) & C(2)-C(1)-C(7) & 124\cdot0(12) & C(13)-C(14)-O(2) & 119\cdot8(10) \\ C(1)-C(7)-N(1) & 119\cdot9(3) & C(15)-O(3)-Fe & 127\cdot7(2) & C(2)-C(1)-C(7) & 124\cdot0(12) & C(13)-C(14)-O(2) & 119\cdot8(10) \\ C(1)-C(7)-N(1) & 119\cdot9(3) & C(15)-O(3)-Fe & 127\cdot7(2) & C(2)-C(1)-C(7) & 124\cdot0(12) & C(13)-C(14)-O(2) & 119\cdot8(10) \\ C(1)-C(7)-N(1) & 119\cdot9(3) & C(15)-O(3)-Fe & 127\cdot7(2) & C(2)-C(1)-C(7) & 124\cdot0(12) & C(13)-C(14)-O(2) & 119\cdot8(10) \\ C(1)-C(7)-N(1) & 119\cdot9(3) & C(15)-O(3)-Fe & 127\cdot7(2) & C(2)-C(1)-C(7) & 124\cdot0(12) & C(13)-C(14)-O(2) & 119\cdot8(10) \\ C(1)-C(7)-N(1) & 119\cdot9(3) & C(1)-C(7)-N(1) & 119\cdot1(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(7) $O(1)$ E                          | 119 2 (2)                              | C(9) N(2) E <sub>2</sub>                   | 120 0 (2)                          | Chelate rings                            |                 |                                                |                                         |
| $\begin{array}{c} (1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(1) = C(1) = Fe<br>O(1) = C(2) = N(1) | 110.5(2)<br>118.5(3)                   | V(2) = V(2) = FC<br>V(2) = C(3) = C(3)     | 120.0(2)<br>123.1(3)               | $C_{\rm III} = O(1) + O(7)$              | 112 5 (8)       | $C_{11}$ N(2) $C(8)$                           | 120 4 (7)                               |
| $\begin{array}{c} C(1)-R(1)-R(2) & 113\cdot R(2) & C(3)-C(1)-C(1) & 123\cdot R(2) & C(3)-C(1)-C(3)-C(1) & 123\cdot R(2) & R(1) & R(2)-C(3)-C(3) & R(1)-R(2) & R(1) & R(2)-C(3)-C(3) & R(1)-R(2) & R(1) & R(2)-C(3)-C(3) & R(1)-R(2)-C(3) & R(1)-R(2)-R(3) & R(1)-R(3) & R(1)-R(2)-R(3) & R(1)-R(3) & R(1)-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(7) = C(7) = N(1)                     | 110.3(3)                               | C(2) = C(0) = C(14)                        | $123 \cdot 1 (3)$<br>$122 \in (2)$ | O(1) = O(1) = O(1)                       | 112.3(0)        | V(2) = C(0)                                    | 130.4 (7)                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $N(1) - N(2) - E_{0}$                  | 113.4(2)                               | C(0) = C(3) = C(14)<br>C(0) = C(14) = O(2) | 123.0(2)<br>122.6(2)               | O(1) - O(1) - N(1)<br>O(2) - N(1) - N(2) | 112.0 (0)       | R(2) = C(0) = C(9)                             | 119.0 (9)                               |
| $ \begin{array}{c} N(1) = N(2) = C(4) \\ Ligand \\ C(2) = C(3) \\ C(1) = C(3) = C(1) \\ C(1) = C(2) \\ C(1) = C(2) \\ C(1) = C(2) \\ C(1) = C(2) \\ C(3) \\ C(4) \\ C(2) \\ C(3) \\ C(4) \\ C(5) \\ C(5) \\ C(6) \\ C(1) \\ C(2) \\ C(3) \\ C(4) \\ C(5) \\ C(5) \\ C(6) \\ C(1) \\ C(2) \\ C(3) \\ C(4) \\ C(5) \\ C(5) \\ C(6) \\ C(1) \\ C(2) \\ C(3) \\ C(4) \\ C(5) \\ C(6) \\ C(1) \\ C(2) \\ C(3) \\ C(4) \\ C(5) \\ C(5) \\ C(6) \\ C(1) \\ C(2) \\ C(3) \\ C(4) \\ C(5) \\ C(6) \\ C(1) \\ C(2) \\ C(5) \\ C(6) \\ C(1) \\ C(1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(1) = N(2) = PC<br>N(1) = N(2) = C(8) | $113 \cdot 1 (2)$<br>$117 \cdot 9 (2)$ | C(3) = C(14) = O(2)                        | 122.0(3)<br>126 1(3)               | $N(1) = N(2) = C_1$                      | 113.0(3)        | C(0) = C(14) = C(14)                           | 123.6 (10)                              |
| $ \begin{array}{c} \text{Ligand} \\ \text{C(1)-C(2)-C(3)} & 119 \cdot 8 (3) \\ \text{C(2)-C(3)-C(4)} & 120 \cdot 4 (4) \\ \text{C(9)-C(10)-C(11)} & 121 \cdot 0 (3) \\ \text{C(3)-C(4)-C(5)} & 120 \cdot 1 (4) \\ \text{C(10)-C(11)-C(12)} & 119 \cdot 3 (3) \\ \text{C(3)-C(4)-C(5)} & 120 \cdot 1 (4) \\ \text{C(10)-C(11)-C(12)} & 119 \cdot 3 (3) \\ \text{C(3)-C(4)-C(5)} & 120 \cdot 1 (4) \\ \text{C(10)-C(11)-C(12)} & 119 \cdot 3 (3) \\ \text{C(3)-C(4)-C(5)} & 120 \cdot 1 (4) \\ \text{C(10)-C(11)-C(12)} & 119 \cdot 3 (3) \\ \text{C(3)-C(4)-C(5)} & 118 \cdot 1 (12) \\ \text{C(3)-C(4)-C(5)} & 120 \cdot 1 (4) \\ \text{C(10)-C(11)-C(12)} & 119 \cdot 3 (3) \\ \text{C(3)-C(4)-C(5)} & 118 \cdot 0 (13) \\ \text{C(10)-C(11)-C(12)} & 118 \cdot 7 (13) \\ \text{C(5)-C(6)-C(1)} & 120 \cdot 3 (3) \\ \text{C(1)-C(13)-C(14)} & 121 \cdot 4 (3) \\ \text{C(4)-C(5)-C(6)} & 121 \cdot 9 (13) \\ \text{C(11)-C(12)-C(13)} & 119 \cdot 5 (13) \\ \text{C(6)-C(1)-C(7)} & 117 \cdot 5 (3) \\ \text{C(13)-C(14)-C(9)} & 117 \cdot 9 (3) \\ \text{C(3)-C(4)-C(7)} & 117 \cdot 5 (3) \\ \text{C(13)-C(14)-C(2)} & 119 \cdot 5 (3) \\ \text{C(13)-C(14)-C(2)} & 119 \cdot 5 (3) \\ \text{C(1)-C(7)} & 112 \cdot 6 (2) \\ \text{C(15)-O(3)-Fe} & 127 \cdot 7 (2) \\ \text{C(2)-C(1)-C(7)} & 112 \cdot 8 (11) \\ \text{C(1)-C(7)-N(1)} & 119 \cdot 9 (3) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N(1) - N(2) - C(0)                     | 117.6 (2)                              | C(14) = O(2) = FC                          | 13011 (2)                          | N(1) - N(2) - Cu<br>N(1) - N(2) - C(8)   | 1177(9)         | C(9) = C(14) = O(2)<br>$C(14) = O(2) = C_{11}$ | 123.5 (10)                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ligand                                 |                                        |                                            |                                    | N(1) - N(2) - C(0)                       | 117.7 (8)       | C(14) = O(2) = Cu                              | 128.5(7)                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(1)-C(2)-C(3)                         | 119.8 (3)                              | C(8) - C(9) - C(10)                        | 117.1 (3)                          | Ligand                                   |                 |                                                |                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(2) - C(3) - C(4)                     | 120.4 (4)                              | C(9) - C(10) - C(11)                       | 121.0 (3)                          | C(1)-C(2)-C(3)                           | 118-1 (12)      | C(8) - C(9) - C(10)                            | 115.5 (10)                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(3) - C(4) - C(5)                     | 120.1 (4)                              | C(10) - C(11) - C(12)                      | 2) $119.3(3)$                      | C(2) - C(3) - C(4)                       | 122-8 (12)      | C(9) - C(10) - C(11)                           | 122.9 (11)                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(4) - C(5) - C(6)                     | 120.0 (3)                              | C(11) - C(12) - C(13)                      | 3) 121.0(3)                        | C(3) - C(4) - C(5)                       | 118-0 (13)      | C(10) - C(11) - C(12)                          | ) $118.7(13)$                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(5)-C(6)-C(1)                         | 120-3 (3)                              | C(12) - C(13) - C(14)                      | 121.4(3)                           | C(4) - C(5) - C(6)                       | 121.9 (13)      | C(11) - C(12) - C(13)                          | ) 119.5 (13)                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(6)-C(1)-C(2)                         | 119-4 (3)                              | C(13) - C(14) - C(9)                       | 117.9 (3)                          | C(5) - C(6) - C(1)                       | 117.6 (12)      | C(12) - C(13) - C(14)                          | 123.8(12)                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(6)-C(1)-C(7)                         | 117.5 (3)                              | C(14)-C(9)-C(10)                           | 119.3 (3)                          | C(6)-C(1)-C(2)                           | 120.8 (12)      | C(13)-C(14)-C(9)                               | 116.5 (10)                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(2)-C(1)-C(7)                         | 123.1 (3)                              | C(13)-C(14)-O(2)                           | 119.5 (3)                          | C(6) - C(1) - C(7)                       | 114.9 (11)      | C(14) - C(9) - C(10)                           | 118.6 (10)                              |
| C(1)-C(7)-N(1) 119.9 (3) $C(1)-C(7)-O(1)$ 119.8 (11) $C(1)-C(7)-N(1)$ 119.1 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(1)-C(7)-O(1)                         | 121.6 (2)                              | C(15)-O(3)-Fe                              | 127.7 (2)                          | C(2) - C(1) - C(7)                       | 124-0 (12)      | C(13)-C(14)-O(2)                               | 119.8 (10)                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(1)-C(7)-N(1)                         | 119.9 (3)                              |                                            |                                    | C(1)-C(7)-O(1)                           | 119-8 (11)      | C(1)-C(7)-N(1)                                 | 119-1 (11)                              |

### Table 5. Dihedral angles (°) and selected deviations (Å) from least-squares planes

The planes are defined by the following sets of atoms: I C(1)–C(6); II C(7), N(1), N(2), M, O(1); III N(2), C(8), C(9), C(14), O(2), M; IV C(9)–C(14); V O(2), N(2), O(1), Cleq, M.

| (A)<br>(B) | I    | II  | III | IV   | E.s.d.* | М      | O(2)   | N(2)   | O(1)   | $Cl_{eq}$ | $Cl_{ax}$ |
|------------|------|-----|-----|------|---------|--------|--------|--------|--------|-----------|-----------|
| I          |      |     |     |      | 0.005   | -0.115 | -0.069 | 0.187  | -0.234 | -0.900    | 2.16      |
|            |      |     |     |      | 0.040   | 0.458  | 0.344  | -0.080 | 0.359  | 1.416     |           |
| II         | 10.9 |     |     |      | 0.042   | 0.027  | -0.101 | -0.035 | -0.030 | -0.351    | 2.37      |
|            | 14.1 |     |     |      | 0.047   | 0.027  | -0.092 | -0.042 | -0.016 | 0.471     | _         |
| III        | 6.0  | 6.8 |     |      | 0.043   | -0.039 | 0.023  | 0.046  | -0.250 | -0.606    | 2.27      |
|            | 16.4 | 3.6 |     |      | 0.023   | 0.004  | -0·019 | 0.002  | -0.130 | 0.364     |           |
| IV         | 3.3  | 8.0 | 2.9 |      | 0.014   | -0.065 | -0.033 | 0.117  | -0.211 | -0.726    | 2.23      |
|            | 17.1 | 3.8 | 0.8 |      | 0.014   | -0.006 | -0.041 | 0.018  | -0.124 | 0.326     | _         |
| V          | 14.8 | 4.4 | 9.8 | 11.7 | 0.127   | 0.134  | 0.008  | -0.089 | 0.022  | -0.076    | 2.47      |
|            | 21.7 | 7.7 | 5.6 | 4.8  | 0.170   | -0.041 | -0.104 | 0.143  | -0.110 | 0.122     | _         |

\* Scatter e.s.d. of a defining atom:  $\sqrt{[(\sum d_i^2)/(n-3)]}$ , the  $d_i$  being the *deviations* of the *n* defining atoms from the plane. This quantity is given incorrectly as  $\sqrt{[(\sum d_i^2)/(n-1)]}$  by program XRAY LSQPL.

the ligand and consisting of a string of molecules along a joined by  $N(1)-H\cdots Cl(1)$  bonds,  $3\cdot 328$  Å, is related to its oppositely directed mate by centers of symmetry, the rungs being centrosymmetric pairs of  $O(3)-H\cdots Cl(2)$  bonds at  $3\cdot 174$  Å. Although the  $N(1)\cdots Cl(2)$  distance,  $3\cdot 264$  Å, is a bit shorter than  $N(1)\cdots Cl(1)$ , listed above, the probable  $N(1)-H\cdots Cl(2)$  angle, with H in the ligand plane, is less than 90°, and the contact can hardly be called a bifurcated hydrogen bond. The ladders stack roughly rail-to-rail along **b** and face-to-face along **c**.

In (B), copper is approximately square planar (Tables 4 and 5), but, as is usual (Aruffo, Anderson, Lingafelter & Schomaker, 1983; Robertson & Truter, 1967), there are also close contacts with copper perpendicular to the coordination plane, in this case with both C(8)(3.330 Å) on one side of the plane and C(10) (3.360 Å)on the other. The oxygen [O(3)] of the water molecule in (B) is 3.851 Å distant from the Cu atom, which is at variance with the formulation of Iskander et al. (1975), who first reported the preparation of (B) and concluded from its IR spectrum that the water molecule was bound to the Cu atom. The closest analog of (B) for which structural data are available (Domiano, Musatti, Nardelli, Pelizzi & Predieri, 1979) is the complex [(H<sub>2</sub>psh)CuCl].H<sub>2</sub>O, (D) (Fig. 3, H<sub>3</sub>psh is pyridoxal salicyloylhydrazone) which, like (B), has an uncoordinated water molecule and, in respect to the immediate chelate system, differs only in that the proton on N(1) has been transferred to the heterocyclic N atom of the pyridoxal ring (Fig. 3). This transfer has, however, only small effects on the bond lengths and angles within the two chelate rings, the strong hydrogen bonds in the two structures  $[N-H\cdots O, N(1)-O(3)]$ = 2.766 Å in (B) and intramolecular N···H-O, N(1)-O(3) = 2.601 Å in (D) apparently moderating the nominal differences in the bond orders of N(1)-C(7)and C(7)-O(1). The uncoordinated water molecule in (B) appears to form altogether three hydrogen bonds: with  $O(3)-H(31)\cdots Cl$  [O(3)-Cl = 3.332 Å]and  $N(1)-H(1)\cdots O(3)$  (already mentioned) it links the tightly stacked alternating molecules into columns along **b** (Fig. 5), and with  $O(3)-H(32)\cdots O(2)$  [O(3)-



Fig. 5. Packing of (B), viewed antiparallel to **b**. The three hydrogen bonds to one of the O(3) atoms are marked by solid lines.

O(2) = 2.823 Å] it joins these stacks along **a**, forming a two-dimensional hydrogen-bond network. [It must be said that O(3) also has a noticeably short distance, 3.389 Å, to another Cl<sup>-</sup>, but that in view of the difference-map location of H(31) and the unfavorable implied bond angles, it is unlikely that this represents hydrogen bonding by a relocated H(31).] Along **c**, there are only van der Waals interactions between the interdigitating aromatic rings.

In (A), (B), and (D) the metal-O(2) bond is considerably shorter than the metal-O(1) bond, the difference being greater in (A) (0.19 Å) than in (B) (0.087 Å) and (D) (0.054 Å). This is consistent with more of the negative charge carried by the ligand being localized on O(2) than on O(1). Some degree of charge delocalization is, however, indicated by the C(14)-O(2)distances, which are shorter than expected for a single bond, and the C(7)-O(1) distances, which are longer than normal C=O double bonds. In (C), which intrinsically has end-for-end symmetry with a highly delocalized  $\pi$  system (Betrand *et al.*, 1978), the Fe-O(1) and Fe-O(2) distances are virtually identical, at 2.021 (4) and 2.037 (5) Å. The metal-nitrogen bond lengths in (A) and (C) average 2.128 Å, those in (B) and (D), 1.933 Å. Similarly, the mean metal-oxygen distances (for the equatorial donors) are longer in (A)and (C) (1.998 Å) than in (B) and (D) (1.924 Å). These shorter distances in the copper complexes probably reflect reduced ligand-ligand repulsion in four-coordinate complexes relative to six-coordinate compounds and the increased nuclear charge of the Cu atom, which makes it a better  $\sigma$  acceptor. The smaller difference between the metal-oxygen distances may arise because the high-spin Fe<sup>III</sup> ion can have a net positive  $\pi$  interaction with the oxygen donors whereas the  $d^9$  Cu<sup>II</sup> ion cannot. Such favorable Fe-O  $\pi$ interactions may partially counteract the abovementioned effects of coordination number and  $\sigma$ acceptor character and may account for the shortest metal-oxygen distance in the four complexes being found in (A) [Fe–O(2) = 1.874 Å].

This research was supported in part by a Biomedical Research Support Grant from the Graduate School of the University of Washington and by Institutional Cancer Grants IN-26U and IN-26W from the American Cancer Society.

#### References

- ARUFFO, A. A., ANDERSON, L. D., LINGAFELTER, E. C. & SCHOMAKER, V. (1983). *Acta Cryst.* C**39**, 201–203.
- ARUFFO, A. A., MURPHY, T. B., JOHNSON, D. K., ROSE, N. J. & SCHOMAKER, V. (1982). Inorg. Chim. Acta, 67, L25–L27.
- BERTRAND, J. A., FUJITA, E., ELLER, G. P. & VANDERVEER, D. G. (1978). Inorg. Chem. 17, 3571–3574.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24. 321-324.

- DIMMOCK, J. R., BAKER, G. B. & TAYLOR, W. G. (1972). Can. J. Pharm. Sci. 7, 100–103.
- DOMIANO, P., MUSATTI, A., NARDELLI, M., PELIZZI, C. & PREDIERI, G. (1979). Transition Met. Chem. 4, 351–354.

DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-397. International Tables for X-ray Crystallography (1974). Vol. IV.

- Birmingham: Kynoch Press. Iskander, M. F., EL-AGGAN, A. M., REFAAT, L. S. & EL SAYED,
- L. (1975). Inorg. Chim. Acta, 14, 167-172. JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge
- National Laboratory, Tennessee.
- JOHNSON, D. K., MURPHY, T. B., ROSE, N. J., GOODWIN, W. H. & PICKART, L. (1982). Inorg. Chim. Acta, **67**, 159–165.

- JOHNSON, D. K., PIPPARD, M. J., MURPHY, T. B. & ROSE, N. J. (1982). J. Pharmacol. Exp. Ther. 221, 399–403.
- PONKA, P., BOROVA, J., NEUWIRT, J., FUCHS, O. & NECAS, E. (1979). Biochim. Biophys. Acta, **586**, 278–297.
- ROBERTSON, I. & TRUTER, M. R. (1967). J. Chem. Soc. pp. 309-317.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY system. Tech. Rep. TR-446, Computer Science Center, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- WATENPAUGH, K. D. (1972). Private communication.

Acta Cryst. (1984). C40, 1169–1172

# Structure of Tetrakis(2,6-dimethylphenyl isocyanide)rhodium(I) Tetraphenylborate Ethanol Solvate, $[Rh(C_9H_9N)_4][B(C_6H_5)_4].C_2H_6O$

BY TERENCE V. ASHWORTH, DAVID C. LILES, HESTER E. OOSTHUIZEN AND ERIC SINGLETON

National Chemical Research Laboratory, PO Box 395, Pretoria, Republic of South Africa

(Received 24 October 1983; accepted 5 March 1984)

Abstract.  $M_r = 992.92$ , triclinic,  $P\overline{1}$ , a = 11.615 (3), b = 23.582 (5), c = 10.409 (2) Å,  $\alpha = 91.20$  (2),  $\beta = 104.19$  (2),  $\gamma = 102.36$  (2)°, U = 2691.9 Å<sup>3</sup>, Z = 2,  $D_x = 1.224$  Mg m<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71069 Å,  $\mu = 0.307$  mm<sup>-1</sup>, F(000) = 1040, T = 293 K. Final R = 0.0554 for 4321 observed reflections. The unit cell contains two independent monomeric square-planar cations lying across centres of inversion at 0,0,0 and  $\frac{1}{2},\frac{1}{2},0$  respectively. Because of steric crowding between ortho methyl groups on adjacent ligands, the phenyl rings of the ligands are not coplanar with the plane of coordination. The formation of Rh-Rh bonded oligomers is thus sterically inhibited.

Introduction. Tetraisocyaniderhodium(I) cations  $[Rh(CNR)_{4}]^{+}$  tend to oligometrize in solution to form dimeric and trimeric species containing weak metal-metal bonds (Singleton & Oosthuizen, 1983). The extent of the oligomerization depends on the solvent, the concentration and the bulkiness of the substituent R, with the colour of the solutions ranging from yellow or orange (monomeric) to green, blue or purple (oligomeric). Crystal structures have been reported for the purple, blue and dark-green crystals of the dimers  $[Rh(CNR)_4]_2^{2+}.2X^-$  with R = Ph, X =BPh₄ (II) (Mann, Lewis, Williams, Gray & Gordon, 1978),  $R = p - FC_6H_4$ , X = Cl (III) and R = p- $NO_2C_6H_4$ , X = Cl (IV) (Endres, Gottstein, Keller, Martin, Rodemer & Steiger, 1979). However, our study represents the first crystal-structure determination of the monomeric form of  $[Rh(CNR)_4]^+$ .

Experimental. The reaction of [Rh(1,5-cyclooctadiene)Cl]<sub>2</sub> with excess  $C_8H_9NC$  in methanol yielded, on addition of  $NaBPh_4$ , the title complex (I). Yellow irregular-shaped crystals suitable for X-ray examination were grown from dichloromethane/ethanol solution. Crystal: fragment,  $0.25 \times 0.20 \times 0.20$  mm; Philips PW1100 four-circle diffractometer, graphitecrystal-monochromatized Mo  $K\alpha$  radiation; lattice parameters: 25 reflections, least-squares refinement;  $\omega$ -2 $\theta$  scan mode, scan width 0.90° in  $\omega$ , scan speed  $0.03^{\circ}s^{-1}$  in  $\omega$ , 15s background at each end of the scan; 7347 reflections measured in the hemisphere  $\pm h, \pm k, +l$ with  $3 \le \theta \le 23^\circ$ , 7032 unique reflections,  $R_{int} =$ 0.019; three standards measured every 60 min showed no significant deviations from mean intensities; no absorption correction applied; 4321 reflections  $[F_o \ge 4\sigma(F_o)]$ , index range  $h \pm 12$ ,  $k \pm 25$ , l = 0-11, used in analysis; structure solved by Patterson and Fourier methods and refined by least squares with SHELX (Sheldrick, 1978), two orientations observed for a disordered ethanol of solvation; site-occupation factors for the two orientations refined but constrained to sum to 1.0; all H-atom positions except for those in the disordered ethanol molecule located on a difference map and refined; anisotropic temperature factors used for all non-H atoms except in the disordered ethanol molecule where individual isotropic temperature factors were employed, separate common isotropic temperature factors used for the ring and methyl H atoms in each independent cation and for the H atoms in the BPh<sub>4</sub> anion; least-squares refinement,  $\sum w(\Delta F)^2$ 

0108-2701/84/071169-04\$01.50

© 1984 International Union of Crystallography